High-pressure phase transitions in rubidium and caesium hydroxides.

نویسنده

  • Andreas Hermann
چکیده

A computational investigation of the high-pressure phase sequence of the heaviest alkali hydroxides, RbOH and CsOH, shows that the phase diagram of both compounds is richer than hitherto thought. First-principles calculations suggest, based on energetics and comparisons to experimental diffraction and spectroscopy signatures, that the high-pressure phase RbOH-VI, stable above 6 GPa in experiment, should be assigned the KOH-VI structure type, and features localised hydrogen-bonded (OH)4 units. Meanwhile, a new high-pressure phase CsOH-VII is predicted to be stable above 10 GPa in an isosymmetric phase transition that, like RbOH-VI, marks the transition from layered to three-dimensional network structures under increased compression. Both new phases highlight an unexpected flexibility of hydrogen bond network formation in a series of compounds that seemingly only vary in the cation size, and potential consequences for similar systems, such as water-carrying minerals, are discussed briefly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rubidium 5'P fine-structure transitions induced by collisions with potassium and caesium atoms

A diode-laser fluorescence experiment was performed in order to study fineStNCtUre transitions between 5'P states of rubidium atoms colliding with ground-state potassium or caesium atoms. The Rb(5'P,/,) state was optically excited and the intensity ratio of sensitized to direct fluorescence was measured. The obtained cross sections for the excitation energy transfer Rb('P,,J + Rb('PII2) induced...

متن کامل

Neutron and high-pressure X-ray diffraction study of hydrogen-bonded ferroelectric rubidium hydrogen sulfate.

The pressure- and temperature-dependent phase transitions in the ferroelectric material rubidium hydrogen sulfate (RbHSO4) are investigated by a combination of neutron Laue diffraction and high-pressure X-ray diffraction. The observation of disordered O-atom positions in the hydrogen sulfate anions is in agreement with previous spectroscopic measurements in the literature. Contrary to the mecha...

متن کامل

The electron electric dipole moment enhancement factors of Rubidium and Caesium atoms

The enhancement factors of the electric dipole moment (EDM) of the ground states of two paramagnetic atoms; rubidium (Rb) and caesium (Cs) which are sensitive to the electron EDM are computed using the relativistic coupled-cluster theory and our results are compared with the available calculations and measurements. The possibility of improving the limit for the electron EDM using the results of...

متن کامل

Structural Transitions in Nanosized Zn0.97Al0.03O Powders under High Pressure Analyzed by in Situ Angle-Dispersive X-ray Diffraction

Nanosized aluminum-doped zinc oxide Zn1-xAlxO (AZO) powders (AZO-NPs) with x = 0.01, 0.03, 0.06, 0.09 and 0.11 were synthesized by chemical precipitation method. The thermogravimetric analysis (TGA) indicated that the precursors were converted to oxides from hydroxides near 250 °C, which were then heated to 500 °C for subsequent thermal processes to obtain preliminary powders. The obtained prel...

متن کامل

The formation of thymidine-based T-tetramers with remarkable structural and metal ion size effects.

We present direct ESI Q-TOF MS and X-ray evidence for remarkable structural and metal ion size effects on the formation of thymidine-based T-tetramers. The conventional H-bond acceptors on the ribose and deoxyribose may disfavor the formation of T-tetramers, and in the series of alkali metal ions, lithium did not induce T-tetramer due to its small ion size. Sodium, potassium, rubidium and caesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 24  شماره 

صفحات  -

تاریخ انتشار 2016